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Abstract

We present a statistical method, predicated on the use ofgate models, for the “real-time”
characterization of partially observed epidemics. Obs@oms consist of counts of symptomatic
patients, diagnosed with the disease, that may be availalie early epoch of an ongoing out-
break. Characterization, in this context, refers to esiiomadf epidemiological parameters that can
be used to provide short-term forecasts of the ongoing epitjeas well as to provide gross infor-
mation on the dynamics of the etiologic agent in the affepagulation e.g., the time-dependent
infection rate. The characterization problem is formullags a Bayesian inverse problem, and
epidemiological parameters are estimated as distribsitisgsing a Markov chain Monte Carlo
(MCMC) method, thus quantifying the uncertainty in the estasa In some cases, the inverse
problem can be computationally expensive, primarily du¢ghto epidemic simulator used inside
the inversion algorithm.

We present a method, based on replacing the epidemiolagicdel with computationally inex-

pensive surrogates, that can reduce the computationalttimenutes, without a significant loss
of accuracy. The surrogates are created by projecting thubof an epidemiological model on
a set of polynomial chaos bases; thereafter, computatimadving the surrogate model reduce to
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evaluations of a polynomial. We find that the epidemic chirézations obtained with the surro-
gate models is very close to that obtained with the originatied. We also find that the number
of projections required to construct a surrogate mod€(i0) — O(10?) less than the number of
samples required by the MCMC to construct a stationary piostdistribution; thus, depending

upon the epidemiological models in question, it may be fs4o omit the offline creation and

caching of surrogate models, prior to their use in an inv@redlem. The technique is demon-
strated on synthetic data as well as observations from th& iriluenza pandemic collected at
Camp Custer, Michigan.
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Chapter 1

Introduction

Epidemiological models, i.e., models that predict the etroh of an epidemic, given certain model
parameters, are routinely used to characterize diseas@sdutbreak data. Often, these are used
in retrospective studies to estimate epidemiologicalaldes which form the model inputs. The
rate of spread of a communicable disease is a commonly dstimaodel parameter [13, 5, 7, 16,
43]; the genesis of outbreaks caused by accidents [6, 58s40]other example. Fewer studies
have targeted the use of models to estimate in real-time rthieapility of human transmission
for emerging infectious diseases [3, 60] or to gauge thecetiEcountermeasures in an ongoing
outbreak [51, 34, 54].

The estimation of epidemiological parameters, in reaktipose certain challendesThe data is
generally sparse and often, only hospitalization timeseadable, rather than times of appearance
of symptoms. Thus models, fitted to real-time data, havedowaat for the hospital visit delay [51].
Further, all estimates are generally uncertain and estisraate best expressed as distributions [34]
developed via a Monte Carlo sampler. A particular difficuttgéd during online model fitting to
data, especially during the early stages of the outbredkeisepresentation of the highly variable
dynamics associated with disease spread; while sophedicaodeling may be able to address
these, the computational expense of Monte Carlo sampling doeallow their use within time-
constraints of online estimation. Thus most epidemiolalgicodels are compartmental ones using
some variant of uniform mixing to model spread, though medifby a time-dependent effective
reproduction number [43, 51]. Clearly, an ability to redube tomputational time of a disease
model can favorably impact the fidelity with which an outlkcean be characterized from partial
observations.

In this paper, we demonstrate a method to do so. At its coregliices to replacing the epidemio-
logical model with a polynomial surrogate, which can be maudtetrarily accurate (at the expense
of computational cost). The choice of the variable being ebed by the surrogate is crucial;
smoothly varying functions are easily approximated by ipaosious surrogates. The surrogate
model is created by projecting the output of the epidemickignodel, run repeatedly with a sam-
pled set of input parameters, on a basis set; a weighted stine dlases constitutes the surrogate
model. The bases are chosen to minimize the number of modklaions and maximize the fi-
delity with which the resultant surrogate reproduces thgioal model. However, the replacement

Note that in epidemiology, where data is often availableyam a daily resolution, a “real-time” computational
process is defined as one that can accomplished in condigiéezab than a day - for our purposes, we take it to mean
less than an hour.
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of the “true” epidemiological model with a surrogate in thergmeter estimation problem intro-
duces an error in the inferred parameters and we explore #gnitude and nature of its impact;
in principle, the impact of the model error can be made snraugh so that it is negligible com-

pared to the errors due to lack of data or due to imperfect oreasents. We also investigate the
efficiency gained, as measured by the reduction in compuiaittime, by employing the surrogate
instead of the original model. The cost of building the sgate model in the first place is also
included in this analysis.

The rest of the paper is organized as follows. In Chapter 2 vesgnt a literature review of
existing work on the estimation of partially observed epiites and the construction of surrogate
models using polynomial chaos expansions. In Chapter 3 vmeuiate an inverse problem for the
characterization of epidemics with partial observatiatescribe the epidemiological models used
in the inverse problem and detail the method by which symtlegidemiological data (used later in
tests) was generated. We also solve the inverse problendemedbp estimates of epidemiological
parameters using an adaptive Markov chain Monte Carlo (MCMGhate In Chapter 4, we
describe the method to construct the surrogate model armn@ate the estimates obtained in
Chapter 3 using surrogates. The differences in the epidegical estimates so obtained (vis-
a-vis Chapter 3) are quantified, along with the savings in adatpnal time. We conclude in
Chapter 5.
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Chapter 2

Literature Review

In this section we review existing literature on the estiorabf epidemiological parameters as well
as the use of polynomial chaos expansions to construct ciatiqmally inexpensive surrogate
models. The former will focus on methods that are amenableetased in a real-time setting,
where only partial observations may be available.

2.1 Estimation of epidemiological parameters from partial ob-
servations

Real-time estimation of epidemiological characteristicsing time-series data from an on-going
outbreak, has recently gained prominence. Most of the nasthave targeted the estimation of
a time-dependent spread-rate, often couched in terms ofdfiective reproductive numbdg;.

In [2] Bettencourt describes a statistical method basedorpsng a prior distribution of epidemi-
ological model parameters, and iteratively forming a pestedistribution based on comparing
simulated epidemic evolutions to sparse observationg, awiew of improving the predictive skill
of the model. His earlier paper [3] developed a Bayesianriecke to estimate a time-dependent
R: (for various influenza outbreaks), conditioned on stregndiata. In [42] Nishiurat al. develop
an epidemic model that includes a time-depend®nand an estimator for it based on the serial
interval observed in an outbreak. The model was fit to histbidata.

Real-time epidemiological characterization can also beedosing data from contact tracing.
Wallinga and Teunis [54] developed a method, based on cotteng data, to estimate the
for SARS outbreaks in Hong Kong and elsewhere and gauge thecinof countermeasures on the
outbreaks. The method is purely retrospective, requiniigkhowledge of chains of transmission,
and is similar to the work (done for plague outbreaks) in [£33uchemeet al. [8, 9] adapted the
method to be applicable in a real-time context, where datandyna small sample of transmission
chains and a small number of symptomatic secondary casesatable. The model assumes that
no index cases are injected into the population after the @tshe epidemic and there is no delay
between the appearance of symptoms and hospitalizatian firhey developed posterior distri-
butions forR; for the SARS epidemic as data became available; within 25 daghe start of the
epidemic (and 5 days post implementation of countermeasRg as estimated from data from
Hong Kong, showed an exponential decline. A similar deciias calculated for plague outbreaks
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in [22]. More recently, particle filters have been used tovate forecasts of HLIN1 outbreaks in
2009 in Singapore [45]. In [51, 34] the authors track the 28RS epidemic in Hong Kong
with a compartmental epidemic model where disease trassmislue to superspreading and non-
superspreading events were represented separately. Bweloded estimates (distributions) of
R:. A novelty in their approach was the inclusion of a model fmitwdelay, i.e., unlike the work
described above, they did not assume that the time of exdmnlnf symptoms was known; the data
consisted of the times that symptomatic patients sougkt car

Retrospective methods to estimate spread-rate of a disadke face of partial data and structured
populations have also been demonstrated for influenza fiD$mallpox [13]. A very different ap-
proach was followed in [5, 48] where they inferred the spredds and the chains of transmission
over a latent social network. The approach was Bayesian iatrtbdtions for the estimated quan-
tities were developed. Brookmeyer and colleagues [32, V¢ loleveloped a method to estimate a
latent time-dependent infection rate by convolving it witle incubation period distribution and
equating it to noisy observations. Smoothness constraigits imposed on the time-dependent in-
fection rate profile, and a point estimate (i.e., no uncetydbounds) was obtained by expectation
maximization. The method was used to estimate the evolatidhe infection rate of HIV in the
1980s and 1990s in USA and provide forecasts of diseaseecincid

Far less work has been done in the estimation of epidemicgedaay nhon-communicable diseases.
They mostly deal with anthrax epidemics [50, 31, 53, 58, 28lised either through an attack or
an accidental release. In [50, 31, 53] the authors employa®&an formulation to pose an inverse
problem to infer the time of the attack, its location, dosape number of index cases and their
distribution in space with application to prioritizing ticare of the infected people. A time-series
less than a week long was sufficient to draw inferences whiefewnformative enough to mount
a response. The inference was in the form of a distributioritfe estimated quantities. In [25]
a slightly different approach was followed, not to charaetean anthrax attack but to provide an
alarm (via syndromic surveillance) under the assumptiahdi anthrax attack had occurred. Nev-
ertheless, the procedure required one to estimate the fsilae attack, which followed a Bayesian
formulation but obtained the estimates via maximum likedi estimation. The work in [40] ana-
lyzed the Sverdlovsk accident by fitting a model of aerosgpdrsion to the residential locations of
the approximately 70 people infected in the accident; thehfitved that the location of the release
was a military compound where anthrax was used for medicgaieh. This may be considered
to be an early (and manual) approach to the characterizeg@miques described in [31, 25]. In
[58], the approach outlined in [40] was followed to eluceltte dose-dependent incubation period
of the anthrax.

In this paper, we will extend Brookmeyer’'s approach [7] sattl can be used in a real-time
setting, with data that reflect symptomatic patients sepkare at healthcare facilities. We do so
by augmenting it with a model for visit delay. Unlike Brookyeg, we will assume a parametric
form for the infection rate; furthermore, the form will aliofor the introduction of index cases into
the affected population at arbitrary times. This allowsititeoduction of transient index cases e.g.,
travellers, who can seed a transmission chain in a populatithout contributing to the morbidity
time-series obtained from it. In doing so, we partially e®me of the assumptions inherent in
Cauchemeet al.’s construction in [8, 9].
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2.2 Surrogate models using polynomial chaos expansions

Surrogate models are computationally inexpensive anaddgxpensive computational models.
These models approximate one (and sometime more) outpatsnaidel as a function of model
inputs. The surrogate models, sometimes also called respsurface models, typically do not
have any scientific/phenomenological arguments undeylgheir construction and can be likened
to “curve-fitting”. The primary issues involved during sogate model construction are (1) min-
imizing the number of expensive-model evaluations to gateethe data to which surrogates are
fit (generally accomplished with some kind of sampling) agdrinimizing the difference be-
tween predictions/outputs of the expensive model and @spansive surrogate. Descriptions of
the issues involved in generating surrogates can be foufbijm4, 24, 14]. Surrogate models are
popular in inversion and optimizations studies since tingglve repeated evaluation of models for
different parameter values.

In this work we will employ polynomial chaos (PC) expansiomsdonstruct surrogate models that
will replace the costly epidemic model evaluations during inference process. The polynomial
chaos (PC) was defined first by Wiener [57], and it has sinced@usignificant number of appli-
cations in various engineering fields [19, 17, 18, 59, 12JsHpproach consists of approximating
a generic random variable in terms of standard random Masaihrough a spectral polynomial
expansion. In the context of this paper the disease evaolutith be cast as a random variable that
is function of uncertain input parameters that define the@piological models. These spectral
approximations are constructed using a relatively smathiner of function evaluations, and can
represent accurately the smooth input-output dependenéier cases where the model exhibits
non-smooth behavior, several domain partitioning methal® been proposed [28, 55, 52]. This
generates a series of sub-domains where models have a sbe@tior, thus enabling the use of
efficient spectral approximations in each region.

Marzouket al. [38] proposed using surrogate models based on PC expansionder to accel-
erate Bayesian inferences. This approach was followed \mrakauthors in a wide range of sci-
entific fields; for source and parameter estimation in poroadia [35, 33], analysis of supersonic
combustion [11], stochastic data assimilation [39] to naiew. To our knowledge this work is
the first attempt to accelerate the inference of epidemicahparameters using a surrogate model
approach based on PC representations.
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Chapter 3

Statistical Characterization of Partially
Observed Epidemics

In this section, we formulate a Bayesian inverse problenstormate epidemiological parameters
conditioned on sparse data. The data consist of a truncatedseries of symptomatic patients
diagnosed with the disease, collated on a daily basis, astrb@available in the early epoch of
an epidemic. The time a patient seeks care at medical fasiig used for data collation (rather
than time of appearance of symptoms) since this informasigenerally easily available. We also
discuss the epidemic models used in the inverse problemhrendaurces of data (both real and
synthetically generated). We conclude with a demonstmatibthe approach on three different
outbreaks and investigate the length of the time-seriesbe&wations required to estimate the
epidemiological parameters to a given level of accuracy.

3.1 Formulation of Inverse Problem

Consider an epidemic seeded My gex index cases. The stream of symptomatigs;, reporting
for care in an intervaltj,ti 1) consists of two parts (a)inq , number of symptomatic people that
were index cases, and (e NUMber of symptomatic people that were not index caseshiey
were infected subsequently as the disease spread. Mefet; 1 —t; is usually 1 day.

The index-case component,q, observed if(t,t + At) can be given by

tiy
Vind = Not (1— G)/r ' finc(S—T; Binc) [Fud(ti+1 — S 6vd) — Fud(ti — S; Bvq)| ds (3.1)

whereN;qt is the total number of people infected during the course efegpidemic (i.e., the final
size of the epidemic), anal is the fraction of people showing symptoms that are not ircheses.
For the index cases the incubation starts at the time of fieetiont. The probability of develop-
ing symptoms between timeands+ dsis given by finc(S— T; 8inc), (Wherefinc is the probability
density function for the incubation period) aRg(ti — s, 8yq) is the cumulative distribution func-
tion (CDF) for the visit delay. Her6;,c and6,4 are parameters that control the incubation period
and visit delay models, respectively. Note that we have tisedact that~,4 = 0 for (t —s) <0

to simplify the above expression. The models for the indobgberiod and the visit delay are in
Sec. 3.2.
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The number of secondary casesgs is given by

tir1 pliva
Vsec= Ntota/ qlr u—Tt;6i) fInC<S T;Binc) X
=1 Ju=

For the secondary cases, the infection takes place att@eeording to the infection rate modeled
by gir. The visitdelay is also applied to the secondary cases agelttier with the infection model,
results in the double integral above. The infection rate ehaghich depends on paramety, is
described in Sec. 3.2.

Thus, the total number of people requesting medical carberirtterval(t;,ti1) is given by the
sum
Vtot = Vind + Vsec (3.3)

and depends on the set of parame@ts (Niot, O, T, Binc, Bvg, Bir ). Here the incubation period, visit
delay, and infection rate models, can be controlled by ormaare parameters.

Given datad in the form of a time-series of observeg (t;,t.1], the epidemic model parameters
© can be estimated in the form of a multivariate PDF via Bayesrié&m:

p(d|©)-p(©)

POId) === (3.4)
where p(d|©) is the probability distribution of observing the dada(also called the likelihood
function), given a particula®, p(®) is our prior belief distribution in that particular value 6,
p(d) is the probability of observing the data. This term is a ndimasion factor in Eq. 3.4 and is
not important when computing(®|d) which is the posterior distribution @& conditioned ord.
The likelihoodp(d|©®) describes the discrepancy, here assumed Gaussian, betveesimber of
symptomatic people predicted by the model and the numbegmopsmatic people observed:

Ny - PRY
p<d|e>:_ﬂexp<_<V<<tnt.2;%]ﬂ> ) ) 5)

where{n;,i = 1,...,Ng} is the time series of symptomatic people requesting mediad. The
standard deviationgy,, between the model and observations can also be inferred aldh the
model parameters. However its value does not affect thelgsions of this paper on the use of
surrogate approximations to replace the expensive epaegical models. For this reason, we
chose a constant valuey, = 150, for all results presented in this paper.

A Markov Chain Monte Carlo (MCMC) algorithm is used to sample frthra posterior probabil-
ity p(©|d). MCMC is a class of techniques that allows sampling from agrastdistribution by
constructing a Markov Chain that has the posterior as itsostaty distribution [15, 20]. In par-
ticular, we use an adaptive Metropolis algorithm [23]. Timethodology is an improvement over
the original Metropolis algorithm [41]. It uses the covauca of the previously visited chain states
to find better proposal distributions, allowing it to exgdhe posterior distribution in a far more
efficient manner; see [23] for details.
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3.2 Epidemic Models and Priors

We describe the models, specifically the PDFs and CDFs useestoibde epidemiological vari-
ables. We will do so for the etiologic agents (plague, infigeand anthrax) to be used in this
study.

The incubation period is described using a log-normal ithigtion i.e.

xp(—w) (3.6)

202

finc(t) =

e
tov/ 21

For plague the values fqip and o, obtained from [16], are .8 and 03762, respectively. For
influenza, the corresponding figures &le79,0.47}, indicating a mean incubation period of 2 days
and a variance of 1 day [4]. For anthrax is dose dependent and is obtained from Wilkening’s
A2 model [58].0 = 0.804— 0.079:log; (D, is also taken from [58], wher® is the dose, in terms
of spores inhaled by the infected individual. For the anthmadel,Bjc is set to log,D.

The visit delay i.e., the delay between exhibition of sympsand the time at which a symptomatic
seeks care, is modeled using a Gamma function. A log-norrodkirfor the visit delay observed
for severe diseases is available in [26], based on datactedldy [27]. However, since the log-
normal model was used in the epidemic simulators employegeterate synthetic data for our
tests, we adopted a Gamma model in the inverse problem temram “inverse crime” (using the
same model to generate the synthetic data and then inferattaengters). The CDF for the visit

delay is given by
91.992

t
Fua(t; Bug) = W /0 {0992exp(—Byqg - ) of, (3.7)

In this equation, the shape parameter, 1.992, is obtainditting to the log-normal model in [26].
However, the rate paramet@ is left as an unknown (i.e., to be inferred when solving tiverse
problem) since the visit delay can shorten during an outbasahe population becomes aware of
it.

We model the rate at which the secondary cases are infecitegl a$samma distribution. This is
best conceived as the number of people infected on a dailg bimge the time of introduction of
the index cases. The Gamma function, for appropriate parenvalues can model an epidemic
when the infection rate initially increases (as more infaet people become available in the pop-
ulation) followed by a waning as countermeasures are pulisicep The peak of the infection rate
and the speed of its decay can be adjusted parametricakyinitial rate of increase is controlled
by its shape paramet&rwhich is generally difficult to infer from partial data. Weeauk = 2 for
plague [49] ank = 23 for influenza (see [30] for derivation).

ok gt )
i (t81) = (15 || texp(—8, D). (3.8)

Here 6 is a rate parameter that largely controls the decay of theasp(infection) rate. Since
this decay will be affected by medical countermeasuresgaed this as a parameter to be inferred
from data.
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The priors used in the inference of epidemiological modeapeeters will be defined in Sec. 3.4.

3.3 Epidemic Data

The time-series dathused in this study is generated using epidemic simulatorg(dgue and an-
thrax outbreaks) and actual observations from the 1918anfla pandemic. The methodology for
simulating epidemics caused by an aerosol release is eddn detail elsewhere. We reproduce
a summary below.

500 ; ; ; ; 1400
12007(b)~
2 400 bd)
S %1000—
o .
S 300 O gool
ko] % :
£ 200 % 600
0%100 § 400r-t
- 8 200}
0 77777 L _ _ \ _ _ 7\7 _ _ \ _ 0 - - Lo - Lo - L= - =
0 10 20 30 40 50 0 10 20 30 40 50 60
Day since the start of epidemic Day since the start of epidemic
2000
(c) ‘
9 ‘
€ 1500 i
=}
o :
O
E 1000f
S
& 500
o
0 el b R TS SO
0 5 10 15 20

Day since the start of epidemic

Figure 3.1. Time series of reported counts of symptomatic cases
for (a) plague, (b) 1918 pandemic influenza outbreak at Camp
Custer, MlI, and (c) anthrax.

Plague Epidemic The plague epidemics are simulated using a SEIR model vattsinission of

the disease occurring over a social network. The detailf®fetworked disease model are in
[48]. We select a set of index cases depending upon theitiposit a given moment; thereafter
the disease proceeds per the effective reproductive nuofliée disease that varies in time, as
described in [49]. The evolution of an epidemic depends enindividuals designated as index
cases; thus one may obtain many different realizations eegidemic for the same number of
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index cases, by varying the individuals (alternativelyMayying the attack site). We designed the
time varying reproduction rate such that the epidemic wtety comes to an end i.e., the final size
of the epidemic is a finite number. Figure 3.1(a) shows thgmssion of the plague epidemic.

Influenza Epidemic: The data for the influenza epidemic is obtained from [4]. Séhare observa-
tions of symptomatic patients seeking care at the infirnsasfeaCamp Custer, Ml, on a daily basis,
during the 1918 influenza pandemic. Note that the data isiostibveillance data i.e., there is no
visit delay in the observations. Fig. 3.1(b) plots the etioluof the Camp Custer outbreak.

Anthrax attacks: The procedure for simulating attacks is fully describedhe Appendix of
[48]. We consider a population distributed unevenly in gpiéica square domain. An aerosolized
preparation of anthrax is released from the origin (lowér derner) of the domain. The release
is evolved in time using a simple Gaussian plume model toigeoa time-resolved value of the
aerosol concentration at ground level. A breathing rate ®f/&in is assumed, which is then
used to calculate the time-integrated dosage for all thevichaals in the population, and using
Glassman’s formula [21], the probability of infection. Timected individuals are allocated their
dose-dependent incubation period (a random variable) peWwhg's A2 model [58] and a visit
delay per the log-normal distribution in [26]. These togettietermine the time-series of patients
who would seek care over a period of time, and serve as themedsignature. Figure 3.1(c)
shows the progression of the anthrax epidemic.

3.4 Results

The inference results for plague, influenza, and anthray®@gented in this section, along with a
discussion on the computational expense for each set sf test

3.4.1 Plague Epidemic

We simulate a plague epidemic using the method describeeéddn 3. 1000 index cases are
infected and the epidemic lasts for 50 days. The epidemiw goeabout 15,000 symptomatic
cases. The inference was performed using the method deddnbSec. 3.1. The inference of
plague parameters requireck3 ® — 5 x 10° MCMC samples to obtain fully converged statistics.
The priors for the model parameté®s= (Not, a, T, Binc, By, Bir ) are given in Table 3.1. For certain
parameters that are constrained to be positive (or negatwegperform the inversion with their log-
transformed values. We generally use Gaussian priors Frashmeters exceput for which we
use a uniform distribution. We found out that the models arsgive to this parameter, and the
inverse problems can generate unphysical solutions witrna small number of secondary cases
for highly contagious diseases, unless we impose striatti®uFor the other parameters, the prior
standard deviations were set large enough to limit the mistribution effect on the posterior
distributions. A similar approach was taken for other dégemodels presented in this paper.

We perform the parameter estimation (epidemic charaetgoia) starting 4 or 6 days past the
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Table 3.1. Prior distributions for the plague model parameters.

Parameter Prior distribution
log(Ntot) N(log(10%),2)
a U(0.6,0.99)
log(—1) | N(log(5),log(10))
log(6va) N(log(0.2),1)
log(8r) | N(log(0.1),1)

infection of the index cases. This delay encompasses theertiguired for the early cases of the
disease to develop symptoms and seek care in sufficient marabd may be thought of as the
“alarm” date. The inferences use 3-15 days of data past tlesofialarm. The median values, 25th
and 75th percentile for a number of parameters entering ldgup model are shown in Fig. 3.2.
The data is collected starting 4 (blue lines) and 6 (red )irdier the start of the epidemic. For
the number of index cases, the true value of around 1000 kétad between 25th and 75th
percentile using around 7-9 days of data. We also noticertirage between the 25th and 75th
percentile, approx. 800, remains somewhat independeheafamber of days of data used in the
inference. The inferred values for the start of the epideane shown in Fig. 3.2(b). The true
values are -4 and -6 days respectively from the alarm datéotin cases the model overpredicts
the magnitude of these values. The total number of sympiommases is shown in Fig. 3.2(c). The
true value of 15000 is bracketed using 7-9 days of data. &irtolthe number of index cases, the
25-75th quantile range remains nearly constant with thebmirof days of data used to infer the
model parameters. The convergence of the Markov chains meretored using thetgi bbsi t
package [56] in R [47] and these results are independenteofitimber of samples drawn by the
MCMC.

Figure 3.3 shows posterior predictive tests based on the MGsi@ples of the plague model
parameters. The ensemble of evolutions, based on the MCMiIngder samples, is then used to
estimate the median, 25th, and 75th quantile and compahedatit: series of reported counts. In
Fig. 3.3(a), the reported counts from days 5 through 14 (togrirom the start of the epidemic)
were used to infer the model parameters and then predictithesfnumber of people seeking care,
while for Fig. 3.3(b) the results are based on 6 more days @f. da both cases the original data
generally lies inside the 25-75th percentile band. In theosd case, in Fig. 3.3(b), inclusion of
more data in the inference narrows the uncertainty in theetgal number of counts compared to
Fig. 3.3(a).

3.4.2 Influenza Epidemic

Unlike the plague epidemic for which the calculations weaisddl on synthetic data, the computa-
tional tests for the influenza epidemic are based on the aditected in Camp Custer, Ml, during
the 1918 pandemic. The data was obtained from [4]. There isaoonical”’ start date for the
Camp Custer outbreak. About 10,500 people were affected. Miegsion was performed using
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Figure 3.2. Estimates for (a) the number of index cadeés(b)

start of the epidemict and (c) total number of cases for a plague
epidemic,N;o; for the synthetic plague epidemic. The error bars
correspond to the 25th and 75th percentiles, respectively. The blue
lines correspond to an alarm date of Day 4 whereas red lines cor-
respond to an alarm date of Day 6.

the method in Sec. 3.1 ar®@(10°) MCMC samples were required (similar to plague). The prior
distribution for the influenza model parameters are pravideTable 3.2.

Figure 3.4 shows estimates of the start of epidemic and tatadber of cases, using between 5
and 13 days of data. In the figure, the origin of the horizoatas is arbitrarily set at the start

of data collection, since we do not have a fixed day for the stathe epidemic. The results

in Fig. 3.4(a) indicate that the epidemic started approxetyab-8 days before the origin of the

horizontal axis. Total number of people who were infectethwifluenza, approximately 10500,

lies within the 25th to 75th percentile band for the resuttsven in Fig. 3.4(b). The uncertainty in

the total number of cases decreases significantly when wgirtg 11 days of data. Beyond this
point the inherent noise in the observations, seen in Fidb3y. prevent a further decrease in the
uncertainty bounds.

Posterior predictive tests for the influenza epidemic aoswshin Fig. 3.5. The disease progression
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spectively. The alarm date is Day 6, and so the start date for the
predicted evolutions is Day 7.

Table 3.2.Prior distributions for the influenza model parameters.

Parameter Prior distribution
log(Neot) | N(log(1.2* x 10%),2)
a U(0.95,0.99)
log(—1) | N(log(5) log(10))
log(Bva) N(log(12),1)
log(8ir N(log(1.25),0.16)

3.4.3 Anthrax Epidemic

estimated based on 9 days of data, in Fig. 3.5(a), showsfis@mi uncertainties beyond Day
10. This result is somewhat expected, given the 5000-150@@rtainty in the total number of
cases, shown in Fig. 3.4(b). The uncertainty range redugesisantly when more data points
are included in the computations. Figure 3.5(b) shows piosteredictive tests based on samples
computed using 13 days of data.

We simulated an anthrax outbreak using the method in Sec223,300 index cases were infected
and the epidemic was simulated for 20 days. The inversiompe&dsrmed as described in Sec. 3.1;
note that anthrax is a non-communicable disease and thd beidg inverted is Eq. 3.1. Figure 3.6

shows statistical results for the number of index cabis ¢tart date of the epidemic)( and the
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average dose of anthrax spof2sas a function of the number of data points used in the inferen
The prior distributions for the influenza model parameteespaovided in Table 3.3.

Table 3.3. Prior distributions for the anthrax model parameters.

Parameter Prior distribution
log(N;) N(10%,10)
log(—T1) N(0,log(10))
log;oD N(3,2)
log(Bva) N(0,1)

The true value foN; in Fig. 3.6(a), 22500, is reasonably well estimated within 8-10 days after the
start of the epidemic, i.e., by using an observation peritmi@ldays long. Note that the inferences
initially show large uncertainties (the error-bars indethe inter-quartile range) but decrease as
more data become available. The inferred time of the statteépidemic is shown in Fig. 3.6(b).
The results are calculated with respect with to the startavé aollection, 4 and 6 days after the
start of the actual epidemic. The results are within 1 dayfiith cases and the difference between
25th and 75th quantiles decreases to about 1 day which isfudution of data collection. The
average dose lggD = 2.8 is bracketed within 25-75th quantiles using 3-5 days oadathe
median value agreement with the actual value improves Wighnumber of data points used to
infer the parameter, however the uncertainty does not educch beyond 7 days of data.

Figure 3.7 shows posterior predictive tests constructedsmilar fashion as were the results for
plague and influenza tests. In Fig. 3.7(a), the reportedtsdoom Days 5 through 10 were used
to infer the model parameters and then predict the futurebmusnof sick people requesting care.
In Fig. 3.7(b), the results are based on 4 more days of data Day 5 through Day 14. Due to

the additional information contained in these data poithis,uncertainty in the reported counts is
smaller compared to the results in Fig. 3.7(a).

3.4.4 Computational Expense

For the plague and influenza computations, the models fanah&er of sick people seeking care
on a daily basis require the evaluation of the single and @dolegrals in (Eg. 3.1) and (Eq. 3.2)
corresponding to the number of index and secondary casgsecatvely. The evaluation of the
double integral is expensive. For the anthrax computationl/ the number of index cases are
computed since the disease is not contagious. The commahtimes presented in Table 3.4 are
for runs on a 2.6GHz Intel Core 2 Duo.

The CPU times correspond to a full set of parameter infereneg@s using between 5-15 days
of data for plague. The evaluation of the double integral n .2) significantly increases the
computational cost for the estimation of plague and inflaemodel parameters. For these com-
putations the CPU time is one order of magnitude larger coetpto the anthrax. A surrogate
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Table 3.4. Computational expense for the inference of plague,
influenza, and anthrax parameters.

Model

Cases

No. of samples

Time-series
length [days]

CPU time [h]

Plague

Index & Sec

3x10°

5-15

7.0

Influenza

Index & Sec

3x10°

5-13

5.6

Anthrax

Index

5x 10°

3-15

0.2

model approach is introduced in the next section, in ordeedoice the computational expense of

the plague and influenza models.
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Chapter 4

Surrogate Models

The surrogate model approach consists of replacing expensidels with polynomial functions,

which are far cheaper to compute (versus the full epidemidet)dout are accurate enough com-
pared to the full model evaluation. Specifically, we will ys@lynomial chaos (PC) expansions
[19, 59] to construct a surrogate model for the number of dpmatic people as a function of

time.

4.1 Construction of Surrogate Models

Let f(x) be an expensive model that depends on an array of randonblemia= (X1,X2, ..., Xn).
For example, for the plague modek Op = (t, Not, @, T, Bir, Byq). We will approximate the model
f as a polynomial expansion:

P
)~ Y b (%), (4.1)
k=0
WhereLIJI((”)(x) = Wy, (x1) - Wi, (x2) - ... - Wk, (Xn) are multi-variate polynomials obtained by taking

the product of uni-variate polynomials that are functioheach componery; in the array of ran-
dom variables([29]. Typically, these polynomials form an orthogonal Isasi order to minimize
the numbers of termB required to obtain certain accuracy in the approximatioent¢éforth we
will drop the superscript ”(n)” to simplify the notation. €multi-variate polynomial&y(x), can
be chosen to be orthogonal with respect to the probabilitysitie function ofx (g(x)) in order to
obtain surrogate models that are most accurate whisrenost likely.

/D W (X)W, (X)g(x)dx = S (4.2)

The expansion coefficientxk (in Eq. 4.1) can be computed in a number of ways; we use the
Galerkin approach that exploits the orthogonality of threngin the expansion

_ (FO)Wk(x)) _
0= iy A (%00 = /D (X)W (X)g(x)dx (4.3)
The integrals necessary to evaluatéx)Wy(x)) are evaluated using numerical quadrature
Nq
(FOOWi) = 3 1 0) i) (4.4)
=
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Here, xq andwg are the quadrature points and weights, respectively, #®mhadrature formula
used to compute the integral. Therefore, in order to evaltia coefficients of the PC expansion,
the full modelf needs to be evaluated at specific values of the input pareswetdhosen to corre-
spond to the quadrature points needed for the numerical@iah of the projection formulas. In
this paper we will be using Legendre polynomials, orthogavith respect to uniform probabil-
ity distributions. In order to construct expansions based.egendre polynomials the parameter
ranges will be rescaled fe-1, 1] intervals.

Once a PC approximation for the epidemiological model i/fobnstructed, this approximation

can replace the evaluations of the full model in the MCMC pdoce described above. The MCMC
technique proceeds as usual to determine the distribufionoolel parameters that best fits the
epidemiological data.

4.2 Surrogate Models for Plague

Careful examination of the equations for the number of indeses (3.1) and secondary cases (3.2)
reveals that the daily counts of the number of people becgsitk can be written as:

Viot () = Niot(a f1(t —T,8yq) + (1 — ) f2(t — T,6yq,6ir)) (4.5)

Here f; is the integral in Eq. (3.1), whild, is the double integral in Eg. (3.2). In this form,

parameterdo: anda are proportionality factors, while leads to a shift in the disease evolution
depending on the start date. This allows us to reduce the aeuaildimensions from six to three

when writing the polynomial expansion (4.1):

P

Veot(t) = Neot ) (0C1k+ (1= )2 ) Wk(t — T,8vq, Bir)) (4.6)
&1

The superscript3) in Eq. (4.6) indicates tha#y’s are trivariate polynomials. The domain of
integrationD in Eq. 4.3, used to calculatgy is 0<t < 50,102 < 6,4 < 2,10 2 < §; < 2. This
domain was chosen large enough to ensure the surrogate rm@aeurate over the entire range of
parameters that can be encountered during the inversiaeeso

Figure 4.1 shows the evolution of the number of people segtamne for a range d;; values. Inthis
figure, Niot, O, andB,q are set to 18 0.92, and 03, respectively. Several polynomial orders, from
5 through 19, are considered. Visual inspection shows tiheeagent between the full model, in
blue, and the surrogate models, in red, is quite bad for mtyals of order 5 and 11, but steadily
improves as the order increases to 19. For the surrogate lsnadimg 19th order polynomials,
approximately 20000 model evaluations were necessaryrtpute the PC coefficients.

Figure 4.2(a) shows epidemic curves corresponding to akséces through the surfaces shown
in Figure 4.1(d). Theb; values are shown near each set of curves in Fig. 4.2(a) andotbe
scheme is the same as in the previous figure. Some discregaara observed between the full
and surrogate models corresponding to srall These discrepancies are inherent to polynomial
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Figure 4.1. Evolution of plague epidemic as a function of the in-
fection rate parameter. The blue wireframe results are based on the
full model, while the red wireframes correspond to surrogate mod-
els using 5, 11, 15, and 19 order polynomials. All results corre-
spond tdB,¢4 = 0.3. Subfigures (a) and (b) show poor comparisons
but the 19th order polynomial in (d) shows good agreement.

approximations for highly non-linear functions. To circuemt this problem we introduce an alter-
nate representation for the surrogate model, where thendiepey on thé, 4 and®;, is replaced

with a dependency on the natural logarithms of these paemet

P

Viot(t) = Neot z (acpk+ (I—a)cok)Wk(t —1,109(Byva), l0g(6ir)))

k=1

33



This modification naturally adds weight to the lower rangevalues for bothd,q and6;,. Fig-
ure 4.2(b) shows epidemic curves from surrogate modelstearsd using Eq. (4.7). The new
results show a better agreement for epidemic curves camnesipg to small values dj,. Similar
results are also obtained for the rangégf values.
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Figure 4.2. Evolution of plague epidemic for several infection
rate parameter values. Left frame surrogate models are based on
Eq. (4.6) while those in the right frame are based on Eq. (4.7). The
surrogate models use 19th order polynomials.

We repeated the epidemic characterization runs descnib®ed. 3.4.1 using the surrogate model in
Eqg. (4.6). The results in Fig. 4.3 show the inferidg; values using the alternative approximations
EqQ. (4.6) and (4.7). The later surrogate model formulatidmclv exhibits a better agreement with
the full model at smalle®,q and6;, values also does a better job estimatingthgrange of values.
While in Fig. 4.3(a) the results show little convergence vpitthynomial order, in Fig. 4.3(b) there
is a clear improvement when using polynomial expansionsdas the transformed parameters in
Eq. (4.7). Similar agreement is observed for the other patara comprising the epidemic model
for plague.

4.3 Surrogate Models for Influenza

We attempted to use the same surrogate modeling approaesa#xd in Sec. 4.2 using Eq. (4.7),
but applied to an influenza model. We found it impossible enidy a single polynomial order
that could representq(t) accurately in the entire domain (0t < 50,5 < 6,4 < 25,0.9 < 6 <

1.6. Consequently, we partitioned thedimension and fit a separate surrogate model in each.
Partitioning thet-dimension resulted in regions where the full model beharxeggt smoothly and
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Figure 4.3. Estimates for total number of cases for a plague epi-
demic. The length of the error bars correspond to the 25th and 75th
percentiles, respectively. The left frame surrogate model results
correspond to Eq. (4.6), using 5th (S5), 11th (S11), and 19th (S19)
order polynomials. The left frame results correspond to Eq. (4.7)
and the same sequence of polynomial fits. The dashed line shows
the actuaN value.

could be fit with relatively low-order polynomials e.g. orde The surrogate model, thus consists
of a collection of polynomial approximations, each valiggown partition of the parameter space.
The partitioning approach combined with low order polynalsican reduce the total number of
model evaluations. For a collection of 10 partitions with 8tder PC expansions in each patrtition,
about 13000 model evaluations (compared to 20000 in theque\section) were necessary to
compute the PC coefficients.

In Figs. 4.4 and 4.5, we explore the impact of the polynomigb@sion order on the quality of the
surrogate models, as well as the effect of increasing thebeumwif partitions of thé dimension.
We see that, due to smooth model behavior in each domairipaytth to 9th order polynomials
are sufficient to capture the full model behavior for 5-daytifians (in Fig. 4.5).

We then repeat the epidemic characterizations in Sec. But.@ith the original epidemic model
replaced with its surrogate. The results in Figs. 4.6 ancshoiv the effects of the partition size
and polynomial expansion order, respectively, on the ref25th percentile, 75th percentile, and
median values for the total number of cases and infecti@ypatameters. Both sets of results show
a clear improvement in the accuracy of results when reduttiagpartition size and/or increasing
the polynomial order. From Figs. 4.6 and 4.7, we find that &a@-dartitions with 9th order poly-
nomials may provide surrogate models sufficiently accui@tese in epidemic characterizations.
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Figure 4.4. Evolution of influenza epidemic as a function of the
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partition, (b) two 25-day partitions, and (c) five 10-day partitions.
All surrogate models use 9th order polynomial expansions and the
results correspond tisko; = 10%, o = 0.99, andd,q = 0.3.
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Figure 4.5. Evolution of influenza epidemic as a function of the
infection rate parameter. The full model is shown in blue and the
surrogate models in red. The surrogate models use (a) 3-rd order,
(b) 5th order, and (c) 9th order polynomial expansions. For all
frames the day axis consists of 10 5-day partitions. The values for

the other parameters are the same as for Fig. 4.4.

37

Reported counts



20000,

(a) ‘ ‘ " [e= Full Model (b)
i =-m S9,d5 1.50r
=@ S9,dl10 L
& 15000 =—m S9, d25 1.45
© 1.40
9
“6 10000F e e e = 135
S = 1.30
c
I 1.25
-
© 5000t » : , ] 1.20
1.15
% 6 8 10 12 14 110y 6 8 10 12
Days, post-alarm Days, post-alarm
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using 3rd (S3), 5th (S5), and 9th (S9) order polynomials split over
5 day intervals.
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4.4 Computational Expense

The computational time required for the surrogate modet@gugh in Table 4.1 show an almost two
orders of magnitude speed-up on the same computing platompared to the results based on the
direct plague and influenza model evaluations in Table 3%.dPU time values shown here do not
include the CPU times required to generate the coefficiemth@polynomial expansions. These
values depend on the polynomial order and the partition sizé are between 0.05-0.1 CPU hours.
However, once computed, the polynomial expansions canusedeto infer the epidemic model
parameters for several data sets. This amortization rerideir computational cost negligible.

Table 4.1. Computational expense for the inference of plague,
influenza, and anthrax parameters using the surrogate model ap-
proach.

Model No. of samples Data [days]| CPU time [h]
Plague 3x10° 5-15 0.14
Influenza 3x10° 5-13 0.11
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Chapter 5

Summary and Conclusions

This report presents an approach for the statistical cheniaation of partially observed epidemics

using surrogate models. Data consists of time series of symadic patients diagnosed with the
disease. The characterization is performed using an eped@odel, which contains submodels

for the incubation period, visit delay, and infection rathelTsubmodels are specialized for three
different diseases (anthrax, plague and influenza). Tt motmber of cases, start of epidemic,
and other epidemiological parameters are estimated frenavthilable time series using a decon-
volution approach. The characterization problem is foated as a Bayesian inverse problem,
and epidemiological parameters are estimated as disoititising a Markov chain Monte Carlo

(MCMC) method, thus quantifying the uncertainty in the estasa

We find that epidemiological models that have the abilityeproduce the complex temporal dy-
namics of epidemics (generally those of communicable de®acannot be naively used in “real-
time” characterization studies with MCMC. Scalable techemlike Ensemble Kalman Filters/S-
moothers may allow their use, but only if Gaussian assumptawe made regarding the distribution
of the estimated parameters. This is best avoided withicdinéext of sparse data. We introduce a
competing approach, where the epidemiological model igoepl by its surrogate. The surrogate
model is a polynomial expansion created by projecting thipudof the epidemiological model on
a set of orthogonal polynomial bases; thereafter, comjmunsiinvolving the surrogate model re-
duce to evaluations of a polynomial. We achieve more thaotafaf 10 speed-up when we do so,
with little or no loss of accuracy. We find that the number ahgée points at which the epidemic
model has to be evaluated prior to projection id@ — O(10?) fewer than the number of samples
required by MCMC to converge; thus it may not even be neceseagnstruct the surrogate mod-
els offline. This advantage arises partially due to our ahaitthe basis set (polynomial chaos)
and partly due to the large number of MCMC samples requirekpioee the parameter space.
These results were obtained using synthetic epidemic datanthrax and plague outbreaks, and
data from the 1918 influenza pandemic collected at Camp Cidienjgan.

We could not find a systematic way of constructing the sutegaodel. In one case, the surro-
gate model consisted of high-order {1@rder) functions of the log-transformed input parameters
whereas in the other, the parameter domain had to be pagdiand fitted with relatively lower-
order polynomials. The particular approach adopted is deéget on the behavior of the model
in question as well as the region in the parameter space wdwaacy is desired. While we
adopted domain partitioning and stretching, the same cpofdentially be accomplished by sam-
pling the parameter domain in an uneven or adaptive manrestigated on the model response (or
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its gradient).

Biosurveillance networks are becoming ubiquitous and aceeasingly used to detect the start
of outbreaks. As the accuracy and timeliness of their dafaones (and the quantity increases),
automated processing, with a view of detecting patternsawitg inferences, will gain epidemi-
ological and public health relevance. Accelerated mearoofg so, along with a quantification
of uncertainty in the inferences, can be expected to assuawtigal importance. In this paper,
we have demonstrated an approach to do so, without sigrificas of accuracy. While the use
of (polynomial chaos) surrogate models may be novel in epidiegy, they are nevertheless used
widely in design and optimization efforts in other fields. Gequently, they may potentially be
useful in real-time epidemiology too.
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